51 research outputs found

    Tribes Is Hard in the Message Passing Model

    Get PDF
    We consider the point-to-point message passing model of communication in which there are kk processors with individual private inputs, each nn-bit long. Each processor is located at the node of an underlying undirected graph and has access to private random coins. An edge of the graph is a private channel of communication between its endpoints. The processors have to compute a given function of all their inputs by communicating along these channels. While this model has been widely used in distributed computing, strong lower bounds on the amount of communication needed to compute simple functions have just begun to appear. In this work, we prove a tight lower bound of Ω(kn)\Omega(kn) on the communication needed for computing the Tribes function, when the underlying graph is a star of k+1k+1 nodes that has kk leaves with inputs and a center with no input. Lower bound on this topology easily implies comparable bounds for others. Our lower bounds are obtained by building upon the recent information theoretic techniques of Braverman et.al (FOCS'13) and combining it with the earlier work of Jayram, Kumar and Sivakumar (STOC'03). This approach yields information complexity bounds that is of independent interest

    Graph Isomorphism is not AC^0 reducible to Group Isomorphism

    Get PDF
    We give a new upper bound for the Group and Quasigroup Isomorphism problems when the input structures are given explicitly by multiplication tables. We show that these problems can be computed by polynomial size nondeterministic circuits of unbounded fan-in with O(loglogn)O(loglog n) depth and O(log2n)O(log^2 n) nondeterministic bits, where nn is the number of group elements. This improves the existing upper bound from cite{Wolf 94} for the problems. In the previous upper bound the circuits have bounded fan-in but depth O(log2n)O(log^2 n) and also O(log2n)O(log^2 n) nondeterministic bits. We then prove that the kind of circuits from our upper bound cannot compute the Parity function. Since Parity is AC0 reducible to Graph Isomorphism, this implies that Graph Isomorphism is strictly harder than Group or Quasigroup Isomorphism under the ordering defined by AC0 reductions

    A Lifting Theorem with Applications to Symmetric Functions

    Get PDF

    The Power of Super-logarithmic Number of Players

    Get PDF
    In the `Number-on-Forehead\u27 (NOF) model of multiparty communication, the input is a k times m boolean matrix A (where k is the number of players) and Player i sees all bits except those in the i-th row, and the players communicate by broadcast in order to evaluate a specified function f at A. We discover new computational power when k exceeds log m. We give a protocol with communication cost poly-logarithmic in m, for block composed functions with limited block width. These are functions of the form f o g where f is a symmetric b-variate function, and g is a (kr)-variate function and (f o g)(A) is defined, for a k times (br) matrix to be f(g(A-1),...,g(A-b)) where A-i is the i-th (k times r) block of A. Our protocol works provided that k > 1+ ln b + (2 to the power of r). Ada et al. (ICALP\u272012) previously obtained simultaneous and deterministic efficient protocols for composed functions of block-width one. The new protocol is the first to work for block composed functions with block-width greather than one. Moreover, it is simultaneous, with vanishingly small error probability, if public coin randomness is allowed. The deterministic and zero-error version barely uses interaction

    Factoring bivariate lacunary polynomials without heights

    Full text link
    We present an algorithm which computes the multilinear factors of bivariate lacunary polynomials. It is based on a new Gap Theorem which allows to test whether a polynomial of the form P(X,X+1) is identically zero in time polynomial in the number of terms of P(X,Y). The algorithm we obtain is more elementary than the one by Kaltofen and Koiran (ISSAC'05) since it relies on the valuation of polynomials of the previous form instead of the height of the coefficients. As a result, it can be used to find some linear factors of bivariate lacunary polynomials over a field of large finite characteristic in probabilistic polynomial time.Comment: 25 pages, 1 appendi
    • …
    corecore